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ABSTRACT

If relational data contain communities—groups of inter-related

items with similar attribute values—a clustering technique
that considers attribute information and the structure of
relations simultaneously should produce more meaningful
clusters than those produced by considering attributes alone.
We investigate this hypothesis in the context of a spectral
graph partitioning technique, considering a number of hy-
brid similarity metrics that combine both sources of infor-
mation. Through simulation, we find that two of the hybrid
metrics achieve superior performance over a wide range of
data characteristics. We analyze the spectral decomposition
algorithm from a statistical perspective and show that the
successful hybrid metrics exaggerate the separation between
cluster similarity values, at the expense of increased vari-
ance. We cluster several relational datasets using the best
hybrid metric and show that the resulting clusters exhibit
significant community structure, and that they significantly
improve performance in a related classification task.

Categories and Subject Descriptors
1.5.3 [Clustering]: Pattern Recognition
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1. INTRODUCTION

Spectral clustering techniques, which partition data into dis-
joint clusters using the eigenstructure of a similarity ma-
trix, have been successfully applied in a number of domains,
including image segmentation [19] and document cluster-
ing [5]. Finding an optimal partition is in general NP com-
plete, but the eigenvectors of the matrix provide some infor-
mation that can be used to guide an approximate solution.
Experimental evidence has shown this heuristic approach of-
ten works well in practice and has prompted further inves-
tigation into the properties of spectral clustering. Recent
findings—facilitated by a long history of work in spectral
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graph theory (e.g., [2])—include a connection to random
walks [13] and preliminary performance analysis [10, 16].
In this paper, we investigate methods of adapting spectral
clustering techniques to relational domains.

The goal of this work is to find communities in relational
data represented as an attributed graph G = (V, E, X),
where the nodes V represent objects in the data (e.g., genes),
the edges F represent relations among the objects (e.g., in-
teractions), and the attributes X record data about each ob-
ject (e.g., localization). Community clusters identify groups
of objects that have similar attributes and are also highly
inter-related. For example in genomic data, a group of genes
with similar attributes and many common interactions may
all be involved in a similar function in the cell. The underly-
ing assumption is that there is a latent cluster variable that
influences both the attribute values intrinsic to objects and
the relationships among objects. In particular, objects are
more likely to link to other objects in the same cluster than
objects in other clusters, and pairs of objects within a clus-
ter are more likely to have similar attribute values than pairs
spanning different clusters. A clustering algorithm that ex-
amines both link structure and attributes simultaneously
should be more robust to noise than methods examining
attribute or link information in isolation.

There has been little work applying spectral techniques to
relational domains with a combination of link and attribute
information. Existing techniques use either: (1) a complete
graph where attribute similarity is calculated for all n x n
pairs of objects (e.g., [16]), or (2) a nearest neighbor graph,
where attribute similarity is calculated for n X d pairs of
objects—each object is connected to a fixed number (d) of
other objects determined by spatial locality (e.g., [19]). Our
work differs in that we are trying to incorporate the hetero-
geneous relational structure into the similarity metric.

The similarity metric, used to populate the similarity ma-
trix, provides a means to extend spectral techniques to new
domains. However, the success of spectral clustering tech-
niques depends heavily on the choice of metric. There has
been some research into learning the correct similarity func-
tion from labeled data (e.g., [1]), but for domains where the
correct clustering is unknown, design has been approached
in a relatively ad-hoc manner. This leaves us with little guid-
ance as to how to incorporate link and attribute information
into a metric for relational domains. This work investigates
the design of similarity metrics that incorporate multiple
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sources of information and identifies the characteristics that
underlie successful metrics.

Specifically, we analyze the normalized cut (NCut) spec-
tral partitioning algorithm [19] from a statistical perspec-
tive. For the special case of bi-partitioning, we show that as
cluster size — oo, the spectral decomposition will include an
eigenvector that is piecewise constant, with respect to the
clusters, for any similarity metric where the average intra-
cluster similarity differs from the average inter-cluster sim-
ilarity. If the eigenvector associated with the 2" smallest
eigenvalue of the similarity matrix is piecewise constant, the
spectral partitioning will be exact [19]. Next, we empirically
evaluate the effect of finite cluster sizes using synthetic data.
We show that: (1) decreasing variance of cluster similari-
ties, and increasing separation of similarities, both improve
the ordering of the eigenvector with respect to the clusters,
and (2) increasing the separation of cluster similarities has
a greater impact on algorithm performance when the NCut
objective function is used. This indicates that a metric that
increases variance in order to better separate the cluster sim-
ilarities will perform better over a wider range of conditions.
Based on these results, we propose a hybrid similarity metric
for relational data that incorporates link and attribute infor-
mation, and we evaluate performance on several relational
datasets. We show that resulting clusters exhibit signifi-
cant community structure and demonstrate significant per-
formance gains when using the resulting clusters in a related
classification task.

2. SPECTRAL CLUSTERING

Spectral clustering originated with graph partitioning tech-
niques that exploit the connection between eigenvectors and
algebraic properties of a graph (e.g., [6, 7]). Recently, Shi
and Malik [19] presented a new clustering algorithm that
uses spectral partitioning to optimize the NCut objective
function. We investigate the application of this algorithm
to relational domains through the use of similarity metrics
that incorporate link and attribute information.

The NCut algorithm of [19] clusters datasets through eigen-
value decomposition of a similarity matrix. The algorithm
is a divisive, hierarchical clustering algorithm, which takes a
graph G = (V, E), a set of k attributes X = {X*, ... XX},
where X¥ = {zf : v; € V}, and a similarity function S,
where S(i,7) defines the similarity between v;,v; € V, and
recursively partitions the graph as follows:

Let Wyxn = [S(4,7)] be the similarity matrix and let D
be an N x N diagonal matrix with d; = >, S(i, j). Solve
the eigensystem (D — W)x = ADx for the eigenvector x1
associated with the 2"¢ smallest eigenvalue A1. Consider m
uniform values between the minimum and maximum value
in x;1. For each value m: bipartition the nodes into (A, B)
such that ANB=0,AUB =7V, andVv, € Az1, < m, and
calculate the NCut value for the partition, NCut(A, B) =
Yica,jen S(:) + Yica,jen S(id)

2icadi >jeBdj ’
the (A, B) with minimum NCut. If stability(A, B) < c, re-
cursively repartition A and B.?

Partition the graph into

"We use the stability threshold proposed in [19] where the sta-
bility value is the ratio of the minimum and maximum bin sizes,
after the values of x; are binned by value into m bins. All the ex-

It takes O(n®) operations to solve for all eigenvalues of an
arbitrary eigensystem. However, O(|F|) approximate algo-
rithms exist [10], and if the weight matrix is sparse, O(n'*)
Lanczos algorithms can be used to compute the solution [18]—
for this reason, similarity metrics that produce sparse ma-
trices are preferable.

Our hybrid metrics calculate the similarity between objects
i and j through a weighted combination of attribute and link
information: S(i,7) = a -+ >, sk(i,4) + (1 — a) - I, where
sk(i,j) = 1 if 2} = 2% and 0 otherwise, and [ = 1 if e;; € E
or ej; € I, and 0 otherwise.

When a = 1, we refer to the metric as AttrOnly. When
a = 0, we refer to the metric as LinkOnly. These metrics
are included as baselines—one for data clustering techniques
that ignore link information, and the other for graph par-
titioning techniques that ignore attribute information. At-
trOnly calculates similarity by counting the number of at-
tribute values objects ¢ and j have in common (scaled by k so
the maximum similarity is 1). LinkOnly uses the relational
structure as a measure of similarity.

When a = %&-17 we refer to the metric as LinkAsAttr. This
approach is an obvious way to include relational information—
links are incorporated as a match on the (k+ 1) attribute.
With no prior domain knowledge, we have no reason to ex-
pect that link structure contains more information than at-
tribute values. However, link structure is often central in
relational domains—for example, in a graph of hyperlinked
web documents, we expect a link to confer more information
about topic clustering than a match on a single word for two
pages. To better exploit the relational information, we set
a = % This metric, referred to as WitLinkAttrl, combines
the link and attribute information uniformly—high similar-
ity indicates that two objects are related or have a number

of attribute values in common.

In sparse relational graphs, the expected intra-cluster link
similarity will be less than one, even if the links are per-
fectly correlated with cluster membership. In this case, if the
link and attribute information are combined uniformly (e.g.,
WitLinkAttr1), or if the attributes are given proportionally
more weight (e.g., LinkAsAttr), noise in the attributes can
drown out a strong link signal. An approach that gives the
link information proportionally more weight (e.g., o > %)
may achieve better performance. In practice we will not
know how to scale the link information to combine the two
sources of information equally. However, for the synthetic
experiments discussed in the next section, we know the max-
imum edge probability is 0.2 so setting o = % equalizes the
attribute and link signals. When a = é, we refer to the met-
ric as WtLinkAttr2. Although we will not know the scaling
factor in practice, we include this metric to test the con-
jecture that the poor performance of WtLinkAttri is due
to the relatively weak link signal being combined uniformly

with the attribute signal.

When a = [, we refer to the metric as LinkAsFilter. It cal-

periments in this paper used the settings: m = [log2(N)+1], and
c = 0.06. Sensitivity analysis on synthetic data shows ¢ = 0.06 to
be a conservative threshold, returning clusters with high precision
but low recall.



culates similarity by weighting the existing edges of G with
the AttrOnly metric. Objects that are not directly related
have a similarity of 0 regardless of their attribute values. A
high similarity score indicates that two objects are related
and have a number of attribute values in common. This ap-
proach incorporates both sources of information while main-
taining the sparsity of the relational data graph so the algo-
rithm can use efficient eigensolver techniques.

3. ALGORITHM ANALYSIS

The recursive nature of the algorithm complicates analy-
sis of higher-order partitioning, so we restrict our attention
to the (simpler) case of a single bipartitioning of the graph.
Finding an optimal partition, which minimizes the NCut cri-
terion, is an NP-hard problem [19]. However, [19] shows that
when there is a partition (A, B) of V such that the 2" small-
est eigenvector x1, of the eigensystem (D — W)x = ADx,
is piecewise constant with respect to a partition (A, B):
x1; = a,i € A, and x1; = (3,71 € B, # a, then (4, B)
is the optimal partition—it minimizes the NCut criterion
and Ay = NCut.

Recent analysis has focused on achieving a more thorough
understanding of the conditions under which x; will be piece-
wise constant. Meila and Shi [13] outline a set of condi-
tions under which the spectral algorithm will return an ex-
act partitioning, showing that the spectral problem formu-
lated for NCut is equivalent to the eigenvectors/values of
the stochastic matrix P = D™'W. The authors connect
spectral clustering to Markov random walks, showing that
P will have an eigenvector that is piecewise constant w.r.t.
a partition (A1, A2) iff P is block-stochastic w.r.t. (A1, A2).
Here, block-stochastic means that the underlying Markov
random walk can be viewed as a Markov chain with state
space A = (A1, As) and transition probability matrix R =
[P.og]s.s/=1.2, where for 5,8 = 1,2, Z]EAS,
As, and Py = ZjGAS/ P;; for any i € A,. This shows that
spectral clustering groups nodes based on the similarity of
their transition probabilities to subsets of the graph.

There has been little analysis of the impact of non-constant
transition probabilities on algorithm performance. Empir-
ical evidence indicates that the algorithm finds good par-
titions even when the transition probabilities are far from
constant. Ideally, we would like to characterize the condi-
tions necessary for optimal performance and bound algo-
rithm performance otherwise. As a first step, we analyze
asymptotic performance for non-constant intra- and inter-
cluster transition probabilities.

If we assume a generative model of the data where a latent
cluster variable (A1, A2), determines the attribute values in-
trinsic to the objects and the relationships among objects,
we can analyze the similarity metric S(4,j), and each entry
in W, as a random variable. Consider the entries of row
i. The entries W;;, W, are not independent because the
similarity values are both based on node i. However, con-
ditioned on the state of i (e.g., attribute values of i), the
entries are independent random variables since the state of
j is independent of the state of k. As a result, the entries
of row i can be viewed as independent random variables.
With this model we can show that any similarity metric will
produce piecewise constant eigenvectors in the limit.

P;jis constantVi €

Theorem: Let A = (A1,As2) be a partition of V. Let
the function S(i,7) define the similarity measure between
vi,v; € V. If, Vi, 5, k, S(i,7) is conditionally independent
of S(i, k) giwen node i, and E[P11]E[P22] # E[P12]E[Pa1]
then, P has an eigenvector that will converge to piecewise
constant w.r.t. A as |A1],]|A2| — oo.

We provide the intuition for the proof here and refer the
reader to Appendix A for details. If we view the entries of
W as random variables, the normalized values in P are also
random variables (i.e., the entries in W divided by a row
sum of random variables). The total intra- and inter-cluster
transition probabilities in P (e.g., ZjeAg/ P;;) then corre-
spond to the ratio of two sums of random variables. Since
the transition probabilities are composed of sums of inde-
pendent random variables, as cluster size — oo, the intra-
and inter-cluster transition probabilities will converge to the
same value for all nodes in each cluster. Therefore an eigen-
vector of the similarity matrix will converge to piecewise con-
stant w.r.t. (A1, A2), provided the intra- and inter-cluster
means (e.g., E[P11], E[P12]) are distinguishable.

This analysis indicates that all metrics will perform equally
in the limit. We expect however, that finite sample perfor-
mance will vary based on the characteristics of the metrics.
In particular, we expect that performance will be influenced
by the mean and variance of the intra- and inter cluster
transition probabilities. We demonstrate the impact of the
transition probability distributions below, using synthetic
data experiments.

4. SYNTHETIC DATA EXPERIMENTS

In order to identify the situations where we can expect each
of the similarity metrics to perform well, we evaluate al-
gorithm performance on synthetic data sets for which the
correct clustering is known. This facilitates analysis over a
wide range of conditions.

4.1 Synthetic Data

Our synthetic data sets are undirected, connected graphs
(G = (V, E)) where nodes correspond to objects and edges
correspond to relations among objects. Unless otherwise in-
dicated, |V| = 200. A binary label, C = {+,—}, is used
to represent cluster membership; labels are assigned ran-
domly to each object with P(4) = 0.5. Each object has five
binary attributes, where the attribute values are assigned
randomly given the object’s cluster label. Edges are added
to the graph by considering each pair of objects in V' in-
dependently, and adding edges randomly given the cluster
labels of the two objects.

The experiments record algorithm performance while vary-
ing both attribute and link association. Within each level of
correlation, all five attributes were generated with the same

probability: Py = P(A = 1|C = +) = {0.50,0.55,...,0.95,1.0},

P_ = P(A=1|C =—-) =1.0— Py. The symmetry in at-
tribute parameters simplifies the analytical analysis but it
is not necessary for algorithm correctness. Intra-cluster and
inter-cluster links were generated with the following range of

probabilities: P}, = P(ei;|Ci = C;) = {0.10,0.12,...,0.18,0.20},

Pl = P(ei;|Ci #Cj) =02 — P!,. Here the range of prob-
abilities, and symmetry, was chosen to produce a graph with



approximately 10% of the n(n — 1)/2 possible edges. This
level of linkage is comparable to the levels of sparsity we
have observed in real-world relational data sets.

4.2 Metric Performance

We measured the accuracy of the six metrics across the range
of attribute and link probabilities described above. Figure 1
reports the accuracy of the clusterings returned by the simi-
larity metrics, averaged over 100 trials at each setting. Note
that the bottom, foremost corner of each plot represents
completely random link and attribute information, where
no metric should do better than 0.5.

LinkOnly and AttrOnly performance is as expected—they
perform well when the link, or respectively attribute, signal
is moderate to high, but poorly otherwise. The LinkAsAttr
and WtLinkAttrl results are comparable to AttrOnly. How-
ever, the LinkAsFilter and WtLinkAttr2 metrics achieve
perfect accuracy over a wide range of conditions, with LinkAs-
Filter covering more space than WiLinkAttr2. These met-
rics should yield good results in datasets where either the
links or the attributes are moderately correlated with the
clusters. However, they do not always perform as well as
LinkOnly and AttrOnly. Consider the LinkOnly results when
link correlation is moderate and attribute correlation is low—
both hybrid metrics achieve significantly lower accuracy than
would be achieved considering links in isolation. Similar be-
havior is apparent for the AttrOnly metric, but notice that
the effect is more pronounced in this situation. This indi-
cates that the two metrics rely more heavily on link infor-
mation and illustrates the tradeoff for utilizing both sources
of information—the additional information increases vari-
ance, which will impair performance in some situations, in
exchange for better coverage of the space.

4.3 Performance Analysis

LinkAsFilter and WtLinkAttr2 achieve superior performance
over a wide range of data characteristics, but what is the
mechanism by which this occurs? Following our analysis
in section 3, we hypothesize that metric performance is in-
fluenced by intra- and inter-cluster transition probabilities.
We conjecture that the algorithm will be able to distinguish
clusters, if the distributions of intra- and inter-cluster tran-
sition probabilities are separable, where separation depends
on the mean and variance of the transition probabilities.

Given our data generation parameters, we can calculate
intra- and inter-cluster mean transition probabilities ana-
Iytically. Recall that our data generation process produces
the same distribution for each cluster, and furthermore, we
know that the transition probabilities in P are normalized
to sum to one. This means we can examine pp;,, = E[Py]
from a single set of distributions, pp,, and pp,,,. When
pp;, = 1.0 there is maximal separation between the two
clusters; pp,,, = 0.5 corresponds to no separation.

Figure 2 graphs pp,, vs. attribute/link correlations. The
shapes of the graphs are quite similar to the accuracy graphs
in figure 1, indicating a strong relationship between mean
separation and algorithm performance. However, the areas
where we observe perfect performance (i.e., accuracy = 1.0)
do not necessarily correspond to maximum mean separa-

tion (i.e., up,, < 1.0). This illustrates a difference between

the LinkAsFilter and WtLinkAttr2 metrics—pp,,, is signif-
icantly higher on average for the LinkAsFilter metric.

., on algorithm performance,
we analyzed the data from all metrics concurrently. Figure
3a graphs pp;, vs. accuracy for the experiments reported
above, combining results from all the metrics in the same
graph. There is a clear relationship between pp,, and accu-
racy (corr= 0.849, p <« 0.05)—accuracy is consistenly high
for pup;, > 0.675 and consistently low otherwise. We looked
at the association between pp,, and the eigenvector val-
ues in x; using a number of different measures of eigenvec-
tor stability. Only one measure showed a clear relationship
to pp;,—a measure of the quality of the ordering in the
(sorted) eigenvector, which looked at the sorted eigenvector
and recorded the maximum accuracy possible from the set
of m possible partition values considered by the algorithm.
The linear search for an optimal partition (in the NCut al-
gorithm) should not be adversely affected by degradation of
piecewise constancy unless the degradation also affects the
ordering of objects’ eigenvector values. If the maximum ac-
curacy is low, this indicates disorder in the eigenvector. The
evector ordering measure is graphed against up,, in figure
3b. It shows that decreasing pp,, results in a disordering of
the eigenvector values. These results explain the high accu-
racy results—for up,, > 0.675 there is little disorder in the
eigenvector.

To examine the effect of up,

Figure 3c graphs evector ordering vs. accuracy. There is
a strong correlation between evector ordering and accuracy,
but there are also a significant number of trials with very
little disorder that achieve only low accuracy. This effect
is explained by figure 3d, where we graph the precision of
the smallest cluster returned by the algorithm. This shows
that when the eigenvector is ordered correctly but the al-
gorithm only achieves low accuracy, it is because the algo-
rithm prefers to separate a small, but pure, cluster from the
rest of the graph. Why does the algorithm break off small,
high-precision clusters even when the eigenvector ordering
is correct? This is not a spurious effect due to consideration
of only a small number of thresholds (e.g., m values). It
remains consistent even when we set m = N. We discuss
reasons for this effect below.

We have shown that mean separation affects algorithm per-
formance through the ordering of the objects’ eigenvector
values, but how does variance interact with mean sepa-
ration to degrade performance? Figures 4a-b graph the
same variables as figure 3a, but for a set of experiments
with |V| = 500, and |V| = 50. This illustrates the im-
pact of decreased, and increased, variance in the transition
probabilities—increasing variance impairs performance for
all pup,, , but decreasing variance only improves performance
for pp,, > 0.675. This is contrary to our expectation that
decreased variance would improve performance by increas-
ing the separation between cluster transition probabilities.
However, this effect is due to the NCut optimization, not
the ordering of the eigenvector values. Figure 4c shows a
box plot of evector ordering as a function of sample size, for
the set of trials with pp,, < 0.675. Except for the small-
est sample size, where we see higher accuracy due to chance
alone, the mean ordering value is monotonically increasing
with sample size. Figure 4d graphs accuracy results for the
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Figure 1: Cluster accuracy of metrics on synthetic data: (a) AttrOnly, (b) LinkOnly, (c) LinkAsAttr, (d)
WtLinkAttr1, (e) WiLinkAttr2, and (f) LinkAsFilter.

Intra cluster mean

Intra cluster mean
Intra cluster mean

Figure 2: Intra-cluster means of metrics for synthetic data: (a) AttrOnly, (b) LinkOnly, (c) LinkAsAttr, (d)
WtLinkAttr1, (e) WiLinkAttr2, and (f) LinkAsFilter.
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Figure 3: Analysis of intra-cluster mean on algo-
rithm performance: (a) 200 objects, (b) up,, vs. or-
dering, (c) ordering vs. accuracy and (d) precision.

same sample, showing that the algorithm converges to low
accuracies as sample size increases. Maximizing the NCut
criterion causes the algorithm to consistently prefer high
precision over high accuracy when the separation between
intra- and inter-cluster transition probabilities is low (i.e.,
w1p;, < 0.675). This indicates that metrics with low pp;,
should not be combined with the NCut criterion.

It is now clear that the WtLinkAttr2 and LinkAsFilter met-
rics achieve their good performance due to high up,,, but
what do they tradeoff for this increased separation? Fig-
ure ba graphs a box plot of up,, for each metric individually.
This is a one-dimensional summary of the data in figure 2,
which again illustrates that the pp,, is significantly higher
for the LinkAsFilter metric on average. Figure 5b graphs a
box plot of the variance of P;, for each metric. This shows
that LinkAsFilter trades off higher variance for increased
mean separation. Figure 4c-d graphs the performance of
WiLinkAttr2 and LinkAsFilter for |V | = 50. Compare this
to figure 1 to see that performance degradation is not uni-
form across metrics. The LinkAsFilter metric is adversly
affected over a wider range of data conditions. This il-
lustrates the primary distinction between LinkAsFilter and
WtLinkAttr2. The LinkAsFilter metric reduces the amount
of information it uses in order to increase the mean sepa-
ration between the clusters. Because it is filtering the at-
tribute information through the existing edges of the graph,
it throws away both useful and noisy data and increases the
variance of the transition probabilities. If the sample size is
large enough to withstand this increase in variance, then the
metric will produce superior clusterings. However, when the
sample size is low, the filter can do more harm than good.
For example, filtering through the existing edges may dis-
connect a previously connected cluster. In these situations,
it may be best to use the WitLinkAttr2 metric, which suf-
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Figure 4: Analysis of intra-cluster variance on al-
gorithm performance: (a) 500 objects, (b) 50 ob-
jects, (c) ordering and (d) accuracy for settings with
e, < 0.675.

fers less from increased variance and still performs well over
a wide range of data characteristics. However, since we do
not know how to set a for WitLinkAttr2 in practice, and
because LinkAsFilter offers the opportunity to use efficient
eigensolver techniques, we focus on LinkAsFilter for our em-
pirical data experiments.

5. EMPIRICAL DATA EXPERIMENTS

The experiments reported below are intended to evaluate
two assertions. The first claim is that the LinkAsFilter clus-
tering approach can be used to find groups of items with
similar attribute values and high inter-connectedness. We
evaluate this claim by comparing the clusters produced by
the LinkAsFilter metric to randomly generated clusters of
the same size, evaluating intra-cluster attribute similarity
and intra-cluster linkage.

The second claim is that the LinkAsFilter clustering ap-
proach finds meaningful clusters. Evaluating clusterings of
datasets for which there is no right answer is a difficult task.
One approach is to present the resulting clusters for user ex-
amination. For this type of subjective evaluation, we include
example cluster members from two real-world datasets. An-
other, more objective, approach is to examine cluster utility
by evaluating the cluster labels ability to improve a related
classification task. We evaluate three approaches (LinkOnly,
AttrOnly, and LinkAsFilter) on a third real-world dataset
in this manner, and show the LinkAsFilter clusters achieve
a significant improvement in classification accuracy.

5.1 Datasets

We clustered three real-world datasets where attributes ex-
hibit correlation among linked objects, and the link struc-
ture exhibits clustering. These are the characteristics we
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Figure 5: (a) Intra-cluster mean by metric, (b)
intra-cluster variance by metric, (c) accuracy of
WtLinkAttr2 and (d) LinkAsFilter for 50 objects.

expect to find in datasets that contain communities, and it
is in these situations that we expect our clustering algorithm
will perform well.

The first data set is drawn from Cora, a database of com-
puter science research papers extracted automatically from
the web using machine learning techniques [12]. We selected
the largest connected component from the set of machine-
learning papers published after 1993. The resulting graph
contains 1,042 papers and 2546 citation links. We clus-
tered the undirected version of this graph. The similarity
metric considered two topic attributes at different levels of
granularity (e.g., {Machine Learning, Neural Networks} and
{Planning, Rule Learning}).

The second data set consists of a set of web pages from
four computer science departments, collected by the WebKB
Project [4]. The web pages have been manually classified
into the categories: course, faculty, staff, student, research
project, or other. The category “other” denotes a page
that is not a home page (e.g., a curriculum vitae linked
from a faculty page or homework description linked from a
course page). The collection contains approximately 4,000
web pages and 8,000 hyperlinks among those pages. We
clustered the largest connected component in these data—a
graph of 1236 pages and 3673 hyperlinks. Again, we used
the undirected version of the graph. The similarity metric
considered two attributes: page category and department.
However, the entire component is from a single department
(Wisconsin) so the department attribute adds no additional
information.

The third data set is a relational data set containing infor-
mation about the yeast genome at the gene and the pro-
tein level (www.cs.wisc.edu/~dpage/kddcup2001/). The data

Table 1: Cora cluster examples

Cluster 9: Belief revision: A critique; Plausibility measures
and default reasoning; Modeling belief in dynamic systems. Part
I: foundations; Knowledge-Based Framework for Belief Change,
Part II: Revision and Update; Iterated revision and minimal re-
vision of conditional beliefs; An event-based abductive model of
update; On the logic of iterated belief revision; A unified model
of qualitative belief change: A dynamical systems perspective;
Generalized update: Belief change in dynamic settings
Cluster 14: In defense of C4.5: Notes on learning one-level
decision trees; Exploring the decision forest: An empirical in-
vestigation of Occams razor in decision tree induction; Algorith-
mic stability and sanity-check bounds for leave-one-out cross-
validation; Bias and the quantification of stability; Characteriz-
ing the generalization performance of model selection strategies;
A new metric-based approach to model selection; Preventing
overfitting of Cross-Validation data; Further experimental evi-
dence against the utility of occams razor

Cluster 19: An empirical evaluation of bagging and boosting;
On-line portfolio selection using multiplicative updates; Hetero-
geneous uncertainty sampling for supervised learning; Improved
boosting algorithms using confidence-rated predictions; On-line
algorithms in machine learning; Training algorithms for hidden
Markov models using entropy based distance functions; A sys-
tem for multiclass multi-label text categorization; Coevolution-
ary Search Among Adversaries

Cluster 24: Refinement of Bayesian networks by combin-
ing connectionist and symbolic techniques; DistAl: An inter-
pattern distance-based constructive learning algorithm; An
Anytime Approach to Connectionist Theory Refinement: Refin-
ing the Topologies of Knowledge-Based Neural Networks; Cre-
ating advice-taking reinforcement learners; Learning controllers
for industrial robots; Generating accurate and diverse members
of a neural-network ensemble; A Neural Architecture for a High-
Speed Database Query System; Comparing methods for refining
certainty-factor rule-bases;

set contains information about 1,243 genes and 1,734 in-
teractions. We clustered the largest connected component,
which consisted of 814 genes and 1475 interactions. The
similarity metric considered 13 boolean function attributes.
Each gene may have multiple functions. We evaluated the
resulting cluster labels’ ability to predict gene localization.
We applied a relational Bayesian classifier [15] to the entire
dataset, using the cluster labels as an additional attribute,
and measured performance.

5.2 Results

Clustering the sample of Cora papers produced 71 clusters
varying in size from 1-202 papers, with an average size of
15. We report statistics for the 28 clusters with more than
six papers. Table 1 includes randomly selected titles from
four clusters for subjective evaluation. Although we did not
use title words in the similarity metrics, the clusters show a
surprising uniformity among the titles. This indicates that
research papers can be clustered into meaningful groups us-
ing the citation structure and topic attributes alone.

To evaluate intra-cluster attribute similarity, we averaged
the attribute similarity across all pairs of genes within each
cluster. As a baseline measure we calculated the average at-
tribute similarity in ten random clusterings. Figure 6a plots
the intra-cluster attribute similarity (dark bars) compared
to the expected averages given random clusterings (light
bars), with the clusters listed in ascending order by size.
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Table 2: WebKB cluster examples

Cluster 5: http://www.cs.wisc.edu/Dienst/UI/2.0/Describe/-
ncstrl.uwmadison/CS-TR~89-890; http://www.cs.wisc.edu/-
Dienst/UI/2.0/Describe/ncstrl.uwmadison/CS-TR-90-947;
http://www.cs.wisc.edu/Dienst/UI/2.0/Describe/-
necstrl.uwmadison/CS-TR-95-1283;  http://www.cs.wisc.edu/-
Dienst/UI/2.0/Describe/ncstrl.uwmadison/CS-TR-91-1037;
http://www.cs.wisc.edu/Dienst/UI/2.0/Describe/ncstrl.-
uwmadison/CS-TR-90-962;  http://www.cs.wisc.edu/Dienst /-
UI/2.0/Describe/ncstrl.uwmadison/CS-TR-89-900; http://-
www.cs.wisc.edu/~reps/reps.html;  http://www.cs.wisc.edu/-
Dienst/UI/2.0/Describe/ncstrl.uwmadison/CS-TR-91-1038
Cluster 9: http://www.cs.wisc.edu/~bart/537/quizzes/-
quiz6.html; http://www.cs.wisc.edu/~bart/cs537.html;
http://www.cs.wisc.edu/~bart/537/quizzes/quiz3.html;
http://www.cs.wisc.edu/~bart /537 /quizzes/quiz10.html;
http://www.cs.wisc.edu/~bart/537/quizzes/quiz2.html;
http://www.cs.wisc.edu/~bart /537 /programs/program?2.html;
http://www.cs.wisc.edu/~bart /537 /lecturenotes/-
titlepage.html;  http://www.cs.wisc.edu/~bart/537/quizzes/-
quiz9.html;

Cluster 11: http://www.cs.wisc.edu/~cs354-2/cs354/-
lec.notes/numbers.html; http://www.cs.wisc.edu/-
~cs354-2/cs354 /lec.notes/data.structures.html; http://-
www.cs.wisc.edu/~cs354-2/cs354 /solutions/Q2.j.html; http://-
www.cs.wisc.edu/~cs354-2/cs354 /lec.notes/arch.features.html;
http://www.cs.wisc.edu/~cs354-2/cs354 /lec.notes/-
interrupts.html; http://www.cs.wisc.edu/~cs354-2/cs354 /-
lec.notes/case.studies.html;  http://www.cs.wisc.edu/~cs354-
2/cs354 /lec.notes/arith.int.html; http://www.cs.wisc.edu/-
~cs354-2/cs354 /lec.notes/MAL.html;

Cluster 14: http://www.cs.wisc.edu/condor/research.html;
http://www.cs.wisc.edu/~bart/cs638.html; http:/ /-
www.cs.wisc.edu/coral/coral.people.html; http://-
www.cs.wisc.edu/~brad/brad.html; http://www.cs.wisc.edu/-
~sastry/spring96.html; http://www.cs.wisc.edu/~ashraf/-
ashraf html; http://maf.wisc.edu/distributed /condor /-
index.html; http://www.cs.wisc.edu/~ssl/resume.html;
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Figure 7: Evaluation of hybrid clusters in WebKB.

Attribute similarity is significantly higher than expected.?
Note that the largest cluster (#28) does not exhibit high
linkage or attribute similarity. This cluster may contain the
set of papers that could not be partitioned into smaller clus-
ters (i.e., the papers with no coherent community structure).

Figure 6b shows the actual and expected proportion of intra-
cluster citations. To assess the connectivity of the clusters,
we compared the proportion of intra-cluster linkage (per
cluster) to expected proportions, given ten random clus-
terings. Again, the proportion of intra-cluster citations is
significantly higher than the expected values. This indi-
cates that the clustering technique is finding groups of highly
inter-connected research papers.

Clustering the sample of WebKB pages produced 55 clusters
varying in size from 1-649 pages, with an average size of 22.
We report statistics for the 15 clusters with more than six
pages, listed in ascending order by size. Table 2 includes
randomly selected URLs from four clusters for subjective
evaluation. Recall that the component graph only contains
pages from the University of Wisconsin. The selected clus-
ters appear to group by function—for example, tech reports,
course pages, or research group pages.

Figure 7b plots the intra-cluster averages compared to the
expected averages given random clusterings. Figure 7b shows
the actual and expected proportion of intra-cluster hyper-
links. The proportion of intra-cluster linkage is significantly
higher than expected, but notice that the largest cluster’s
(#15) expected linkage is quite high by random chance.
This may indicate that the largest cluster contains a set
of pages that are too tightly connected to partition. This
clustering does exhibit significantly higher than expected at-
tribute similarity. However, we note that the algorithm is
still able to cluster pages into groups that are highly inter-
connected. This indicates that the LinkAsFilter metric may
be robust to irrelevant attribute values.

Clustering the sample of genes produced 88 clusters varying
in size from 1-140 genes, with an average size of 8. We report
statistics for the 14 clusters with more than six genes. Intra-
cluster attribute similarity (figure 8a) and intra-cluster link-
age (figure 8b) are both significantly higher than expected.
These results show that the LinkAsFilter metric can be used
to find groups of genes with similar functions and many com-
mon interactions.

The structure of genomic data offers an opportunity for an
objective evaluation of the clustering results. Clusters of
inter-connected genes with similar associated functions may
indicate a group of genes that are interacting to perform a
particular function in the cell. If this is the case, the cluster
labels should be helpful in predicting gene localization in the
cell. To test this hypothesis, we used the cluster labels to
predict gene localization. We applied a relational Bayesian
classifier (RBC) [15] to the gene data, using the cluster labels
as an additional attribute, and measured change in accuracy.
Figure 8d reports average 10-fold cross-validation accuracies
for RBC models learned using the cluster labels from the
LinkOnly, AttrOnly, and LinkAsFilter metrics. The baseline

2We assessed significance using two-tailed t-tests, p < 0.05.
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RBC model used twelve attributes for prediction, including
gene phenotype and motif, and achieved an average accu-
racy of 66.3%. The RBC model that included cluster labels
from AttrOnly did not significantly improve accuracy.®> The
model that included cluster labels from LinkOnly achieved
a significant improvement in accuracy, with an average of
68.4%, indicating that gene interactions alone are helpful
for predicting location. However, the model that included
cluster labels from LinkAsFilter achieved an average accu-
racy of 70.2%. This is a significant improvement over both
LinkOnly and the baseline RBC model without cluster la-
bels, which demonstrates the utility of clustering for com-
munities using both attribute and link information.

6. DISCUSSION

This paper presents a hybrid metric for spectral clustering
algorithms that exploits both attribute information and link
structure to improve discovery of communities in relational
data. There has been relatively little work investigating
clustering techniques for relational domains. The work in
this area has focused on either complex generative models
with latent variables [11, 20, 3], or augmented clustering
techniques that use ad-hoc similarity metrics to incorporate
both link and attribute information [14, 9]. Due to the com-
plexity of probabilistic relational models with latent vari-
ables, and the sparsity of relational graphs that enable the
use of efficient eigensolver techniques, we chose to explore
extensions to spectral clustering for relational domains.

The most closely related prior work is that of He, Ding, Zha,
and Simon [9], which uses a spectral graph-partitioning al-
gorithm to automatically identify topics in sets of retrieved
web pages. This approach uses a similarity measure specifi-
cally designed for high-dimensional text domains with weighted
co-citation links. We differ from this work, and other re-

3 Again, significance was assessed using two-tailed t-tests,
p < 0.05.

search on hybrid spectral algorithms, in our exploration of
the characteristics that underlie successful similarity met-
rics.

We have set up a framework to evaluate different similarity
metrics quantitatively over a wide range of relational data
sets. Our experiments show that increasing the separation
between total intra-cluster and inter-cluster transition prob-
abilities results in superior performance over a wide range of
data characteristics. One way to increase the separation be-
tween cluster transition probabilities is to drop potentially
noisy information from consideration. Using this approach,
we expect the LinkAsFilter metric will successfully recover
groupings over a wide range of data characteristics.

There are two primary advantages to using the LinkAsFilter
metric. The first advantage is algorithm efficiency—there
are O(F) approximate eigensolver algorithms, and there are
O(n'*) exact eigensolver algorithms for sparse matrices that
can exploit the sparse matrix structure produced by the met-
ric. The second advantage is the choice of a = [, which is
independent of data characteristics. We expect the metric
will work well in any dataset exhibiting community struc-
ture, provided there is enough data to withstand the associ-
ated increase in variance. In small datasets, where the size
of the data cannot offset the increase in variance, the appli-
cation of balanced metrics (e.g., WtLinkAttr2) may produce
superior clusterings. In practice however, this approach is
limited by the need to set « to balance the link and attribute
information.

With a way to evaluate each setting, an algorithm could
search for the best a. Our analysis indicates that the “best”
settings will maximize the separation between the intra-
cluster and inter-cluster transition probabilities. We con-
jecture that the eigenvector information—more specifically,
the separation between the means of distributions of the
eigenvector values on either side of the cut—can be used to
approximate this information. We report preliminary find-
ings in support of this conjecture.

Figure 9a graphs the correlation between algorithm perfor-
mance and the separation of eigenvector-value distributions.
We clustered over the space of synthetic datasets described
in section 4.1 using 20 different values of «, chosen uni-
formly in the range [0,1]. We recorded (1) the accuracy of
the clustering, and (2) the distance between the means of the
eigenvector-value distributions on either side of the chosen
cut (after the values were normalized to unit range). Fig-
ure 9b shows performance when we set o by maximizing the
separation between the means of the eigenvector-value dis-
tributions. Comparing this graph to figure 1, we can see that
this technique approaches the performance of the LinkAs-
Filter metric. This is a promising direction to explore for
applications with little data, where the variance will be too
high to apply LinkAsFilter successfully.

7. CONCLUSIONS AND FUTURE WORK

We have analyzed the spectral decomposition algorithm from
a statistical perspective and shown that the successful hy-
brid metrics use the link and attribute information to in-
crease the separation between noisy clusters. We have shown
an empirical connection between the distribution of tran-
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sition probabilities and algorithm performance, connecting
both mean and variance to cluster accuracy. Future work
will compare this approach to latent-variable relational mod-
els and explore complexity/efficiency tradeoffs between the
two techniques. Furthermore, we will attempt to derive the-
oretical bounds on finite-sample performance, and explore
the alternative optimization criteria for data with low mean

separation, where the NCut criteria prefers high-precision/low-

recall groupings.

In addition, the WebKB results suggest an alternative clus-
tering task—clustering data that exhibit role equivalence
structure, rather than community structure. Objects that
play the same roles in a graph have similar attributes and
similar link patterns but may not actually link to each other.
For example, faculty pages rarely link to each other but they
conistently link to student and course pages. Current meth-
ods for grouping data in this manner focus primarily on link
information (e.g., [17]). Extending this work to incorporate
attribute information seems an exciting direction to explore.
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APPENDIX

A. PROOF OF THEOREM

Theorem: Let A = (Ai1,A2) be a partition of V. Let
the function S(i,j) define the similarity measure between
vi,v; € V. If, Vi, 5, k, S(i,j) is conditionally independent
of S(i,k) given node i, and E[P11]E[P22] # E[P12]E[Pa1]
then, P has an eigenvector that will converge to piecewise
constant w.r.t. A as |A1],|Az2| — oo.

PRrROOF. In order to simplify the calculations below, we
assume that the two clusters share the same distribution of
intra- and inter- cluster similarity values. The symmetry
in attribute parameters simplifies the analysis but is not
necessary for correctness. Let u;, be the mean intra-cluster
similarity for nodes i,j € Ay or i,j € Ao. Similarly, let pout
be the mean inter-cluster similarity for nodes ¢ € A; and
j € As.

We can represent each entry in W as a random variable.
Consider the entries of row i. The entries W;;, W, are not
independent because the similarity values are both based
on node i. However, conditioned on the state of i (e.g. at-
tribute values of i), the entries can be viewed as independent
random variables if the state of j is independent of the state
of k. This assumption corresponds to a generative model in
which the objects and links in the graph are conditionally
independent given the object cluster memberships.

We will calculate the expected intra- and inter-cluster transi-
tion probabilities in P as a ratio of sums of random variables.
Let T}, be the total intra-cluster transition probability for
node i, where ¢ € Ay ke1,2, and let |Ax| = ng. Similarly, let
T¢... be the total inter-cluster transition probability, and T},
be the total transition probability. Then P, is the ratio of
T¢, and T}, and P?,, is the ratio of T}, and T%;,.

The normalized transition probabilities in P then corre-
spond to the ratio of two random variables (e.g., T}, /T%,),
which can be approximated using a truncated Taylor se-
ries expansion. The expectation and variance for intra- and
inter-cluster normalized transition probabilities are below.
(Analytical derivations are included in Section A.1.)

i _ i i KTy . 9Ta1112 _ “TinTaul
E[Pzn] - E[Tzn/Tall] ~ “T;;ll, [1 + [MTZH ] MT;LTIH;(I”

. . : w oT oT, T
BIPhu) = BT /i) ~ fese - [14 [t ]? — ess s

where oxy is the covariance of X, Y.

As n1,n2 — oo, it follows directly from the Law of Large
Numbers that the value of Tfn/Tfn — 1 for 4,j € Ay, since
Tin is a sum of independent random variables with finite
mean and variance. A similar argument holds for Ty, and
Twii. Now consider the normalized transition probabilities
for P. If, in the limit, the sums T}, (and T, T';;) converge
to the same value for all ¢ € Ay, then the normalized sums
P%n will converge to the same value P;, for all i € A,. A
similar argument holds for P¢ ;.

As ni,n2 — oo, we can decompose the matrix P into P =
P’ 4 €E, where P’ is a matrix with constant transition prob-

abilities P;,, and Poyut, and E is a perturbation matrix with
||E||2 = 1. Then by matrix perturbation theory [8]:

(P + €E)x;(€) = Xi(e)x;(€)

T
y; Ex;

where XZ(E) =X; + 62?:17]-#1- {m} + 0(62) 5
and  Ai(e) = i £ —5F—

[yiTxi]

Here x;, yi, and \;, are the right and left eigenvectors, and
the eigenvalues of P’. As ni,n2 — oo, € — 0 and the
eigenvectors of P will converge to the eigenvectors of P’.
Therefore the graph will converge to a Markov chain with
state space A = (A1, A2), and constant transition probabil-
ities R11 = R22 = E[Pzn}, and R12 = R21 = E[ f)ut}- If
Ri11 # Ri2, then R will be non-singular, and by proposition
2 in [13], P will have a piecewise linear eigenvector w.r.t
A, O

A.1 Analytic Derivations

When S(z,7) is conditionally independent of S(i,k) given
the state of node i, the cluster transition probabilities are
simply sums of independent random variables. Using condi-
tional expectation (E[h(X,Y)] = Ex{E[h(X,Y)|X]}), we
can calculate the expectation for T}, based on the state of
i, which we refer to as is:

B[] = E[X;ea, S(,9)]

=25 Plis) - B3 e 4, S(is, j)]
=3, p(is) - nu - E[S(is, j)|j € Ax]
=m0, plis) 2, pis) - S(is, js)
=Nk Y. 24, Plis) - p(js) - S(is, js)
= ny - E[Sin]
=Nk - fin

Total inter-cluster and overall means are calculated in a sim-

ilar fashion. E[Tgut] =Ny fhout, and E[T;”] = (nk - tin) +
(ni * pout), Where nys = 1 iz

The variance of the total intra-cluster similarity is calculated
as follows :

Var[Tf,] = Var(y e a, S, J)]
= Eig{Var(}2;ca, Sis, 7))}
=Y, plis) - Var[¥,c 4, S(is, j)]
=2, plis) -ne - Var[S(is, j)|j € Ak]

=np -2, >, plis) - p(js) - {S(is, js) — Eis[S(is, js)]}”

Total inter-cluster and overall variance are calculated in a

4The derivation uses the following equivalence:

Var(h(X,Y)) = E[hX,Y)? - E[r(X,Y))?

= Ex{E[MX,Y)*|X]} — Ex{E[h(X,Y)|X]*}

= Ex{Var(h(X,Y)|X)}



similar fashion: Var[Tt,] = nw ;. plis) - Var[S(is, j)|j € Awl,
and Var[T,,] = 2 ig Plis) {n - Va?"[S(Z& )i € Aw]
+ni - Var[S(is,j)|j € Axl}

From these we can calculate the expected transition prob-
abilities of P using the ratio of two random variables (e.g.,
Tin/Tan). These calculations use an approximation of the
ratio of two random variables, based on a truncated Taylor
series expansion:

~ . oy 12 _ oXY
E[X/Y]  mb% 4[] - 2]

- 2 [fox 12 oyi2 _ o9 oXY
Var(X/Y) = [%i [[ui] + [m{] 2HXHY]

The expectation and variance for intra- and inter-cluster
normalized transition probabilities are as follows:

L =BT g - et
VarlPL] = VarlTi, /Tu) = [:Z?n Pl + [Z?ZP —QJ;TZT;‘” )
E| Zut] = E[Tg'ut/T;“] ~ ‘;?:;t 1+ [HT{IZ ]2 :Tioif;”
Var[Pou] =Varlou/Tum] = [FZ:::; il Z;:Z: ’ [Z;a” I? - Q:Tioqu;iil

where oxy is the covariance of X,Y. For the equations
above, the covariance of T;, and Ty; reduces to the vari-
ance of T;,, using conditional expectation to eliminate the
covariance:

0TnToy = ElTinTan] — ETin] - E[Tau)
= E[Tin(Tin + Tout)] — E[Tin] - E[(Tin + Tout))
= E[T2, + Tin - Tout) — E[Tin]* — E[Tin] - E[Tout]
= B[T%] + E[Tin - Tout] — E[Tin]* — E[Tin] - E[Tout]
= E[T2] — E[Tin]? + E[Tin - Tout] — E[Tin] - E[Tput]
=Var(Tin) — 32, p(s){E[Tin - Tout|i] — E[Tinli] - E[Toue|i]}
=Var(Tin) = 32, p(is) -0
= Var(Tin)

A similar derivation applies to the covariance of T,.: and
Taur-



